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On the Determination of Relative Fitness from Frequencies
of Genotypes in Subsequent Generations*

Part I1. Statistical Problems in Estimation of Fitnesses

R. J. LORENZ

Institut fiir Biologie der Universitit Tiibingen, Lehrstuhl fiir Genetik, und Bundesforschungsanstalt fiir
Viruskrankheiten der Tiere, Tiibingen (Germany, BRD)

Summary. In part I of this paper (Theoret. Appl. Genetics 40, p. 11 —17) an algebraic treatment of reproduction and
selection processes in populations of diploids was given. Here the statistical properties of a special fitness estimator,
which is due to Hayman, are considered. Confidence intervals and tests of significance concerning hypotheses about
fitnesses are established and checked by computer simulation studies in part III.

The genotype frequencies fi*' and fil, are not
known exactly in real experiments, but estimated by
means of sampling. This is also true for the parameters
¥; (rate of outcrossing, recombination frequency etc.)
which appear in @, the transition operator. There-
fore, 5" and f{}, are random variables, while ¢; is
a function of random variables (for meaning of sym-
bols see part one). According to (1.44) or (1.44.a) —
see part one of this paper — w, is itself a random vari-
able. What can be said about the precision of the
fitness estimates?

This question obliges to distinguish between the
true (but unknown) fitness of a genotype and its esti-
mate. We arrive at the following problem: Given a
numerical difference of the fitness estimates of two
genotypes, as calculated according to (1.44) or (1.44.a)
from observed genotype frequencies, would it be
correct to conclude that the corresponding true fit-
nesses differ? And if so, what can be inferred about
the amount of the true difference?

There are a lot of examples which furnish evidence
that distinct genotypes (or types of gametes) differ
in their (true) fitnesses with respect to the same envi-
ronment. Today this kind of behavior of a popula-
tion is accepted to be the rule rather than the excep-
tion. Nevertheless it seems to the author that in
many cases this experience is based more on repeated
observations of the trend of this behavior than on
stringent tests of significance. The general difficul-
ties of making]such a significance test were mention-
ed in the introduction of part one. This implies that
studies of important aspects which depend on judging
of single experiments (as for example the dependence
of natural selection on locality and season) are limited
by the lack of such tests.

* Gekiirzte Fassung einer der Mathem.-naturwiss.
Fakultdt der Universitdt Tiibingen eingereichten Disser-
tationsschrift (Teil IT und III).

Populations which were investigated by Allard
and coworkers (lima bean, barley) retain an amount
of genotypic variability after many generations which
can hardly be explained by outcrossing (29, in bar-
ley, 5—89% in lima bean). It was postulated there-
fore that heterozygotes are favoured by natural selec-
tion. Fitness estimates were calculated according to
(1.44) and (1.45). The proportion of random out-
crossing, ¢, however, was estimated by means of
a separate experiment and the estimate assumed to
be equal to the true value. Thus, in (1.45), £ is used
as a constant parameter instead of a random variable.
Under this condition the fitness estimators were
presented as maximum likelihood estimators. Fur-
thermore, the variance-covariance matrix was speci-
fied (Allard and Workman, 1963).

With respect to the details of experimentation the
use of ¢ as a parameter instead of a random variable
implies the neglect of a considerable source of sampl-
ing fluctuation of the total fitness estimates. Apart
from this, information is needed about the joint
sampling distribution of the fitness estimates in order
to utilize fully the variance-covariance matrix (e.g.
for construction of tests of significance). With re-
ference to the m.l.-property this means information
about the speed of convergence towards normally
distributed random variables. In other words:
What size of sampling is required for “‘sufficient”
normality of the joint distribution of fitness estima-
tes? The chief point is that errors of the first and
second kind associated with confidence statements
and (formally executed) tests of significance may
deviate from their nominal values if the condition of
normality is not satisfied.

Confidence intervals and tests of significance have
not yet been established by Allard. What follows is
an attempt to supplement the extensive studies of
Allard’s group with respect to the statistical aspect
of the problem.
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We refer to the experiments as described by Allard
and Workman (1963). It should be added, however,
that the sample size N, for estimation of the propor-
tion of outcrossing was small as compared with the
sample size N for estimation of genotype frequencies
in generations n and n 4+ 1. In general, N, was
200500 seeds, and even 150 seeds were used in
some cases (Woéhrmann, Jana, pers. commun.),
whereas N varied from 2500 to 5000.

The quantity ¢ was then estimated by the ratio

A~

£ - HT:
“ P

where H is the observed proportion of heterozygote
individuals among the progeny of the N, recessive
seeds, and j; the estimated genotype frequency in
generation n (estimated from a sample of size N).

The variance of £ is
el = (P (A 0 (0
(2.2)

The last term on the right-hand must be added be-
cause the gene frequency is estimated not by counting
of single genes but of genotypes.

(2.1)

The Fitness Estimators

First the estimators corresponding to (1.43) and
(1.45) with ¢ = 1 are considered, with all parameters
being substituted for by thelr estimates. Writing
(xm Yno Z”) lnStead Of f(l) f(2) f 3)) and (xn+1: Ynt1 zn+1)
instead of ( s, f@, 79 ) in order to simplify the
notation, we have
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(2.3)
With reference to (2.1) it is evident that is not inde-
pendent of (x,, y,, 2,), since p =x,+ (1/2) y,. On the
other hand, H is independent of (x,, y,, 2,). The joint
distribution of %,1, Y411, 241 is multinomial, which,
for N — oo, is known to converge to a singular three-
dimensional normal distribution. The same holds
for x,,y,, z,. The vector (x,i1, Yni1, Zuy4) is inde-

pendent of (x,, ¥, z,).

The nominator and the denominator in a fitness
estimator (2.3) are therefore independent random
variables. The denominators are rational functions of

random variables, which are asymptotically normal
but not independent. The question arises as to whe-
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ther the fitness estimates (2.3) themselves may be
expected to be asymptotically normally distributed
under these circumstances.

Ratios and Products of Random Variables

If X and Y have a joint two-dimensional normal
distribution with means m,, m,, variances o3, ¢; and
coefficient of correlation g, then the density function
of Z = X|Y is given by Fieller's formula (1932),
which specializes to the density function of Cauchy’s
distribution for m, = m, = 0. It is well known that
the latter has infinite moments. The same is true for
the distribution of Z. According to Fieller this diffi-
culty may be overcome by taking notice of the fact
that X as well as Y is restricted to some limited inter-
val of positive values in many applications. This is
true in the case of fitness estimates, where X and Y
are identified with the nominator and denominator
respectively. Here we have 0 << X <1 and 0<C Y <1,
Furthermore it may be assumed that a constant
€ > 0O exists, such that 0 <e<<C Y < 1.

Another supposition in Fieller’s consideration is
that g, < m,, which may be seen also to hold good
in our application for sufficiently large sample size.
If m, and m, are positive and large compared with g,
and g, respectively, then the predominant part of the
mass of the joint distribution of (X, Y) is contained
in the interior of an ellipse which in turn is situated
within the (4-+)-quadrant of the system of coordi-
nates. If now the joint (normal) densitiy function is
taken to be zero for all (X, Y) outside this ellipse,
one may ask about] the effect of this curtailment
upon the density of Z. It is clear that the moments
of Z are now finite. Tiieller’s conclusion is that the
area under the density curve is increased near the
mode at the expense of the tails, but that for suffi-
ciently large diameters of the surrounding ellipse this
has no visible effect on the appearance of the distri-
bution. For an estimation of the amount of distortion,
see the original paper.

Now the moments of the curtailed distribution of Z
may be approximated by the method of Merrill
(1928). Using the decomposition X = m, -}- £,
Y = m, 49, where E(§) = E(y) = 0, var (§) = o},
var () = o, and g(&, ) = 0, we have

Mt & m £ R
T omytq my[1+mx][1+my]

For || < m, this may be expanded to
—maly gy € A il
Z_m[1+m][1— -|-———m3 -.-].(2.5)

The expectation E (Z") of the n-th power of this expan-
sion is taken as y,, the n-th moment about zero of Z.
Merrill retains the products & #* as far as the eighth
order and takes for their mean value the product
moments of the normal surface. For the justifica-
tion of this procedure, see Fieller (1932).

(2.4)
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Here the expressions for the first five central
moments u; = E [(Z — E(Z))"] of Z are reported.
FFor abbreviation

My Ox %
Zo—m_y L vy:ﬁ};,’
Py =12 —2pv,0, + vy, (2.6)
i = —elx WU 3y,
Voi—200vsvy+ o} Voo ( )
Then
pi = E(Z) =Zy[1 + v, (v, — 0 7))
X (1 -3 vy 4 15 vy + 105 v})]
to = Z% Py [1 + 03 (5424 3) +vf (54 A2 4-15)
+uf (59142 -+ 105)]
tty = Z3 3/2U 206 + 4Uy (1112 + 18) (2.7)

+ v} (104412 -+ 828)]
pa=2Z3 P33 + 3005 (342 -1-1)

+ v} (633 A% 4 2106 A2 4 315)]
ps = Z3 p¥*v, A [60 + v5 (1580 42 + 1380)] .
Furthermore it is

2

+ 4 vy (— 146 A% + 450 A2 + 1917)]
Bo="L4 =3+ 3 [v (2022 + 4)

3
+ vy (—1422 - 404 4% + 42)] .
From this we obtain
= l/ﬂl (2.8)
72 =P —3 (2.9)
The expressions for f, and fi; show that skewness
and excess of the distribution of Z depend on v, and 4

only, and that if v, — 0, u3 and u; as well as y; and y,
converge to zero.

skewness

excess

Merrill has given some conditions under which the
distribution of Z will itself be close to the normal.
In general this is true for X and Y following the nor-
mal law closely, and if v, and v, as well as g are small.
On the other hand, in a footnote in Merrill’s paper,
K. Pearson called attention to the observation that
comparatively slight deviations from the bivariate
normal distribution of X and Y may lead to re-
markable divergence from normality in the distri-
bution of Z.

In our application we use another statement on
quotients of independent random variables, which is
due to Curtiss (1941; theorem 6.1):

Let the independent variables X, and Y, have re-
spective distribution functions F,(x) and G4(y) which
depend upon the two parametersa and . Let H, 4(2)
be the distribution function of the quotient Z, ;=
X,/Y, If there exist two chance variables X and Y
with respective distribution functions F(x) and G(y)
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such that lim F,(x) = I(x) at all points of continuity

of F(x), and lim Gﬁ( } = G(y), at all points of con-
B>

tinuity of G(y), then
lim H, g(z) = lim lim H, g(z) = lim lim H, g(8) =

a—00 f—00 f—>00 a—>00

H(z)
B

at all points of Eontinuity of H(z), where H(z) is the
distribution function of the variable X/Y.

With regard to products of random variables a
theorem of Aroian (1947) should be mentioned:

If X and Y have a joint normal distribution and if
—1 +e<g<1(e>0), then the distribution of
T = X . Y approaches normality for v, —> 0, v, —> 0.

According to Aroian, this theorem may be ex-
tended to the case that X and Y are asymptotically
normal. As a special case we notice that the square
of a (asymptotically) normal variate is asymptotically
normal if its coefficient of variation converges to zero.

Application to the Fitness Estimator

With respect to the theorems of Curtiss and of
Arman it follows from (2.3), that w,, W, w, and also
WF =@, wE = W,[iy, are asymptotlcally normal
for N — 0o, N; = 00. Moreover it has been shown
by P. M. Geppert (1969, pers. commun.) that @,, w,,
w, are maximum likelihood estimators under the same
condxtlon On the other hand, in Allard’s experiments
N, is bounded and H is very small (.01 to .1), whereas
N is very large as compared with N,. Under this
condition the distribution of / is asymptotically bino-
mial for N — 0o, and the denominators in (2.3) are no
longer asymptotically normal.

This means that if { is estimated from an experi-
ment of small size (IV,), certainly the fitness estima-
tors themselves are not asymptotically normal for
N — oco.

But if £ is taken as a constant, the corresponding
estimate of the fitness variance does not contain that

component which results from { being a random
variable. The component even increases in propor-
tion to the total variability of the fitness estimate
if NV increases. Thus it may be speculated that the
formulas for the variances of fitness estimates which
are used by Allard tend to become unreliable at just
the point when N becomes large, provided that N,
remains small.

In order to study the implications of these restric-
tions in more detail, a system of computer simulations
of the estimation procedure was performed by means
of pseudo-random numbers. The program was built
up with regard to the following special problems:

1. Evaluation of empirical distribution functions
(d.f) of w,, #,, W, and also for W} = w,ji,, wf =
= w,/w, and of the corresponding statistics (mean,
variance, skewness, excess).
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2. Evaluation of the d.f. s of those normal distri-
butions, which are expected to be the asymptotic
distributions.

3. Evaluation of confidence intervals for the true
fitness (under normality) and estimation of corre-
sponding probabilities of error. These may differ from
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the theoretical ones if the normality condition is not
satisfied.

4. Evaluation of tests of significance for detecting
of fitness differences and calculation of the power
functions of these tests for a number of different com-
binations of genotype frequencies and sample sizes.

Part III. Simulation Experiments

1. Empirical Distribution Functions
of Wy, W, W, Wk, W

Two samples, each of size N, from multinomial
distributions (%, f, ) and (£, [, fi,) were
generated by means of equally distributed random
numbers. These samples represent empirical geno-
type frequencies (%,, ¥,, 2,) and (Xn44, Yui1, Znpq) 1N
generations #» and # + 1. Another set of N, equally
distributed random numbers was used to produce a
sample from a binomial distribution with mean N,H,
where H is determined such that ¢ = H/p, equals a
fixed value given in advance; p, is predetermined to
be p, = [+ (1 /2) f‘” The simulated estimate of ¢
is then given byt = H/j)” = H/(x + 1/2 yn)

From these numbers the quantities ¢,, ¢,, ¢, and
w,, W, w, are calculated according to (2.3), and the
%1mu1at10n of an individual field experiment is com-
pleted. In order to galn a good approximation of the
distributions of @, wy, and w, 1000 simulations,
each with a new set of random numbers, were per-
formed for the same basic genotype frequencies and
ratio of outcrossing. The mean and the central mo-
ments of order 2, 3, and 4 were estimated for w,, w,, w,
from the corresponding sample of 1000 SImulated
estimates. At the same time a set of 1000 vectors
of “reduced” estimates (¥, 1, wF) were obtained,
but no moments were calculated from them.

Different combinations of the parameters {fi}
and { ,‘,Z’r,} and off were used to get an impression of
how the empirical d.f. s depend upon the parameters.
These combinations were selected in the following
manner: Different sets of $, and ¢ are given in ad-
vance. For any given p,, one of the three genotype
frequencies in generation #» may be taken at will, for
example f*. TFurthermore, only populations in
equilibrium were considered, i.e. fi!; = fi’. Under
the equilibrium condition the quantities w¥ and w¥
(as well as w,, w,, w,) are uniquely determined by
(P 1, /i7)-

Four different rates of outcrossing ¢ = .10, .08,
.06, and .04 were used at two different levels of gene
frequency p, = .55 and .85. For any of these eight
combinations five to eight different genotype fre-
quencies /" were selected in such a manner that the
corresponding values of w¥ (and w¥) form a sequence
of decreasing levels. Thus a totality of 51 combi-
nations was obtained (see Table 1).

Furthermore N and N; were varied to demonstrate
the dependence of the statistics and the tests upon
sample size. In the main group of simulations N,

was taken to equal N, and five different levels were
employed for each of the 51 combinations mentioned
above: N = N; = 400, 800, 1200, 1600, 2000. For
populations no. 21, 29, and 49 (Table 1) an additional
size of 4000 was used.

The assumption N; = N was made in order to
simulate the asymptotic behavior of the fitness esti-
mates under normality condition. In contrast to this
more theoretical case a number of populations
(No. 1, 2, 3, 4, 5) were considered also under the con-
dition that N, remains fixed at N; = 400, whereas N
varies as before.

To summarize, there are 283 different combina-
tions in all of the parameters p,, ¢, /i and N(N,). For
each of these designs a run of 1000 individual simu-
lations was accomplished.

After accomplishing of any run, from the resulting
sample of 1000 vectors (w,, w,, w,) the following
statistics were calculated for each component: mean,
mean square deviation, skewness, and excess. For
the same parameter combination, the corresponding
“true”’ parameters according to Merrill’s formulas
(2.7) to (2.9) were also calculated. In addition, the
Merrill-parameters of @§ and @¥ were calculated for
each parameter combination.

It should be noticed that the comparison of the em-
pirical statistics with their corresponding Merrill-
parameters is asymptotically correct only because
of the supposition in Merrill’s formulas that a quo-
tient’s nominator and denominator are strictly nor-
mal variates, whereas for small values of N and N,
the nominators and denominators of the fitness esti-
mators are certainly not. It is to be expected, how-
ever, that the statistics approach the parameters for
increasing N and N,.

To calculate the Merrill-parameters, the coeffi-
cients of variation of the nominators and denomi-
nators are needed. In addition, for @* and @¥ the
coeificients of correlation between w, and w, and
between w, and w, respectively are needed. Variances
and covariances of functions of random variables
were calculated by the approximate formulae (Cramér
1946)

var (g) ~ 2/ %‘%ECOV (. &) (2.10)
whereg = g(&, ..., &), y; =E(£), and ——=(§_§) ,
i
%
cov (g M) ~ I XK Seov (6,6)  (241)
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Table 1. Lquilibvium populations used for simulation.
Pn: gene frequency, t: proportion of oulcrossing

Pn 4 fif) f;;y) ]‘if) Wy
.55 .10 .500 100 .400 .0945
480 140 .380 9722
.450 .200 .350 .9370
400 .300 .300 .8738
.300 .500 .200 .7268
.55 .08 510 .080 410 .9965
.500 100 .400 9858
.480 140 .380 .9639
450 .200 .350 19294
400 .300 .300 8673
.55 .06  .520 .060 420 .9980
.510 .080 410 9877
.500 100 400 .9772
.480 140 .380 .9557
450 .200 350 19218
.55 .04 530 .040 .430 9991
.525 .050 425 .9941
.520 .060 420 9892
.515 .070 415 0841
.510 .080 410 .9701
.500 100 .400 9688
490 120 .390 .9583
85 .10 .825 .050 125 .9988
.822 056 122 .9968
.820 .060 120 9954
.810 .080 110 0887
.800 100 100 .9815
.790 120 .090 .9750
770 160 .070 .9610
.85 .08 .830 .040 130 .9993
.825 .050 A25 19960
.820 .060 120 .9927
815 .070 A15 .9894
.810 .080 110 0861
.800 100 100 .9794
.70 120 .090 9727
85 .06 .833 .034 133 .9984
.830 .040 130 .9965
.825 .050 125 .9933
.820 .060 120 .9900
.815 .070 A15 .9868
.810 .080 A10 .9835
.800 100 1100 .9770
.85 .04  .838 .024 138 .9986
.837 .026 137 .9980
.835 .030 135 .9968
.833 .034 133 .9955
.831 .038 A31 .9943
.827 .046 127 0018
.820 060 .120 .0874
.800 100 100 .9745

wy w; w¥ w¥ }\’I(:)p
1.0582  .9932 .9398 .9385 1
1.2444 9651 .7812 .7755 2
1.4337  .9204 .6536 6420 3
1.6260  .8386 .5374 .5157 4
1.8215  .6395% .3990 3511 5
1.0471  .9956 .9516 9508 6
1.1682  .9823 .8438 8409 7
1.3462 .9548 .7160 7093 8
1.5198  .9110 6115 5994 9
1.6892  .8306 .5134 4917 10
1.0363 .9975 .9631 9626 1
1.1887 .9847 .83090 8284 12
1.3038 .9717 .7495 7453 13
1.4660 .0447 .6519 6444 14
1.6168 .9017 .5702 5577 15
1.0256  .9988 9741 9739 16
1.1416  .9928 .8709 8697 17
1.2346  .9866 .8012 7992 18
1.3109  .9804 .7508 7479 19
1.3746  .9741 7123 7087 20
1.4749  .9613 6568 6518 21
1.5504 9432 6181 6116 22
1.0471  .9921 .9588 9524 23
1.1045 .9787 .9024 8861 24
1.1429  .9697 .8710 8485 25
1.3008 .9224 .7601 7091 26
1.4209 .8730 6907 6144 27
1.5094 .8163 .6459 5408 28
1.6410  .6914 .5856 4213 20
1.0309  .9954 .9693 9655 30
1.1521 .9743 8645 8457 31
1.2500 .9524 7942 7619 32
1.3308 .9206 7435 6986 33
1.3986  .9061 .7051 6479 34
1.5060 .8562 .6503 5685 35
1.5873 .8021 .6128 5053 36
1.0870  .9899 9185 9107 37
1.1730 .9778 .8495 8336 38
1.2887  .9571 .7708 7427 39
1.3793  .9357 7478 6784 40
1.4523 .9134 .6795 6290 41
1.5123  .8903 .6504 5887 42
1.6051 .8414 .6087 5242 43
1.1050 .9918§ .0038 8976 44
1.1463  .9879 .8707 8619 45
1.2195 .9804 8174 8039 46
1.2824  .9726 7765 7587 47
1.3362 .9648 7441 7220 48
1.4250 .9487 .6960 6658 49
1.5384 .9195 .6418 5977 50
1.7182  .8271 .5672 4814 51

Theoretical and empirical values are shown for the
runs of population 21 in Table 2. Instand of the mean,
the bias is noted there, this being the difference be-
tween the expected and the true value in the Merrill
case, and the difference between the observed sample
mean and the true value in the empirical case.

From Table 2 it is seen that the theoretical and
empirical values of the bias and of the standard de-
viation (s.d.) agree very well, whereas empirical skew-

ness and excess show remarkable fluctuation about
their respective parameter values. It is difficult to
judge these deviations, since tolerance limits for these
statistics are not known under conditions of non-
normality. If a comparison is made with the stan-
dard error of skewness and excess in samples of nor-
mal variates (Cramér 1946), the deviations are found
to be of an acceptable order of magnitude. Apart
from this, for all statistics a tendency of convergence
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Table 2. Population No. 21: Theovetical and empivical distribution parameters of fitness estimales
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Bias Standard dev. Skewness Excess
o Merrill empir. Merrill cmpir. Merrill empir. Merrill empir.
W 400 .00222 .00138 .06739 .06884 20118 32146 .09612 43739
800 .00111 .00105 .04750 .04846 14103 26937 04716 11971
1200 .00074 .00054 .03874 .04070 11482 .00594 03124 —0.24499
1600 .00055 .00084 03354 .03442 .09930 —0.03382 .02335 .01125
2000 .00044 .00043 .02999 .02755 .08874 .02934 .01865 —0.04205
4000 .00022 .00030 02119 .02142 .06265 .16765 .00929 —0.01955
';;]y 400 .03022 .03622 .31890 .30971 66224 51801 1.01437 .49378
800 .01463 .01450 .21890 21657 43140 44870 44454 15878
1200 .00966 .01325 17709 17663 .34310 .36351 28244 .30307
1600 .00721 .00750 .15268 15233 .29334 .38374 20661 21379
2000 .00575 .00621 13619 .14495 .26039 .15397 16278 —0.43242
4000 .00286 .00291 .09581 .09503 18142 14683 07890 —0.23115
&& 400 .00308 .00351 .08069 .08273 23459 19559 13230 .28179
800 .00153 00153 .05681 .05731 16386 11913 06445 02883
1200 .00102 .00104 .04632 04812 13326 15231 04259 —0.11952
1600 .00077 .00028 .04009 .03931 11518 .20840 03180 27217
2000 .00061 .00052 .03584 .03162 .10289 17359 02537 —0.20748
4000 .00031 .00018 .02532 .02486 .07259 —0.05940 01262 —0.10134
wh 400 .03991 .20260 1.86312 5.81713
800 .01716 .12289 1.02889 2.07518
1200 .01096 .09622 .77843 1.22437
1600 .00806 08172 65015 86175
2000 .00637 .07228 .56941 66302
4000 .00311 .05003 38681 .30602
w¥ 400 .03843 19855 1.81997 5.59516
800 .01650 12072 1.00420 1.99312
1200 .01053 09459 .75952 1.17549
1600 .00774 .08037 .63426 .82820
2000 .00612 .07109 .55544 63638
.00299 .04923 37724 .29367

4000

to the parameter values is recognized with increasing
N (= N,).

The statements made about population 21 hold
good in all other cases. For illustration some of the
empirical cumulative d.f.s (c.d.f.) of @, and of &7
from populations 4, 21, 29, and 49 are shown in Fig. 1
for three different sample sizes together with the
c.d.f. of the limit normal distribution (with w, and w3
respectively as mean and with s.d. as derived from
Merrill’s formula). The figures confirm what one
would expect from theory: the speed of convergence
towards the limit normal distribution is larger in
general for p, = .55 as compared with .85, and within
these groups in turn it is larger for ¢ = .10 than for
t = .04. On the other hand, the convergence is better
for @, than for @}f. The figure for population 49 shows
in addition the c.d.f. of @, as an example where the
genotype frequency f¥' = £, is extremely small
(.0406).

What is of more importance than pure measures of
“‘non-normality’’ is the possible effect of these devia-
tions on the value of confidence statements and
tests of significance, a problem with which we will
be concerned in the next sections.

2. Confidence Intervals

Approximate confidence limits for the true fitness
values were determined according to the procedure

of Fieller (1944): Let again X and Y be normal
variates with E(X) =¢, var(X)=o; E(Y) =21,
var (Y) = o, cov (X, Y) =0, ,, and « = &/n. Then
a = X — & Y is normal with E(a) = 0 and var (a)
=0; — 2& 0,,+ «? oj. Furthermore

X—aY

U == Lo nTmme v 212

Va?,—zaax,y+azo§, ( )

is normal with E(U) = 0, var (U) = 1. Thus a con-
stant #, >> 0 may be selected such that

Prob {ju] << u,} =1 —¢. (2.13)

The set of all those values of « which satisfy this
equation for given x and y constitute a confidence
interval for & with confidence coefficient 1 — ¢. The
upper and lower confidence limits «, and «; are found
as solutions of

(1203 —9%) &t — 2 (w0, — ¥ y) o+ (@2 — 22) =0,
(2.14)

which results from the inequality on the left hand side
of (2.13).

To applicate Fieller’s theorem to w,, w,, and w,,
x is to be replaced by %441 (Yn+t1, Zn41 resp.), whereas
v must be replaced by @,(@,, @, resp.); w,(w,, @, resp.)
is to be used for «. The corresponding variances are
to be applied accordingly. The covariances vanish in
these cases, since nominators and denominators are
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independent. The variances are obtained by appli-
cation of formulae (2.10) and (2.11), where the esti-
mates are substituted for the true parameters. For
example we have

~ op; Op;  Op;
var (¢;) = [T;’ 3f7(;) ’ 3f7(;) X

var (f) cov (i, 2,)  cov (£, y,) %
A a 5
X | cov{¢, x,) var (x,) COV {%y, V) ?fx;

” o0p;
cov (L, y) €OV (¥, 3,) var (3,) 70

(2.15)
The terms %’% etc. are functions of p,, /¥, and ¢,

whereas the figures in the 3 X 3-matrix are other
functions of the same parameters and of H. In all
these expressions the involved parameters are repla-
ced by their estimates.

Application of Fieller's theorem to ¥ and w¥
means to replace x by w, (w, resp.), y by @,, and «

3=,/ W, e
Popul. No. 21 (p, = .55; ¢ = .04)

Fig. 1. Empirical cumulative frequency curves of w, and w¥ from

by w} (wf resp.). Foro,, the covariances cov (i, w,)
and cov (w,, w,) respectively must be substituted,
and var (,) (var (,) resp.) is to be used for o} and
var (i,) for g;, these all being determined according
to (2.10) and (2.11). These expressions are functions
of the population parameters, and again these are
substituted by their estimates, so that, for example,

we have the expression cov (@, w,) instead of
cov (i, b,).

With this procedure, however, some of the condi-
tions of Fieller's method are infringed upon. The
estimates of variances and covariances, as obtained
here, are not independent of the estimates of the
ratios, as is required. Furthermore, the nominators
and denominators are only approximately normal.
The simulation experiments tell us how robust against
these deviations Fieller’s method for determining con-
fidence limits is. For each individual experiment the
95%-confidence limits for w,, w,, w, w}, and w¥
were calculated by this “modified’” Fieller-procedure.
It was then decided whether or not the true fitnesses
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populations 4, 21, 29, 49. Broken lines: Expected limit normal curves

are included. After a run of 1000 experiments an
empirical percentage of correct statements is obtained
which is compared with the theoretical value of 959%,.
In Table 3 the relative frequencies of correct state-
ments are shown for the runs of populations no. 4,
21, 29, 49.

Another method for calculating approximate confi-
dence limits for w¥ and w} was applied at the same
time. Estimates of the variance of w¥ and w¥ are
obtained in the same way as described above. For
example

@) = () [var (Wx>+var (@)

dov (s, 17:,,)] .
Wy

=
Wy Wy

(2.16)
All values of wj which now fit the inequality
W% — 1.96 |/Var (w¥) < wk < B -+ 1.96 )/Var (%)
(2.17)

form an approximate 959%,-confidence interval for w}
in an individual experiment. Again for each run the

Wx*= W)(/Wy
Popul. No. 49 (p, = .85;¢ == .04)

frequency of correct statements was evaluated. In
order to distinguish this kind of limit from the Fieller
confidence limit they will be denominated as the
Gauss confidence limits.

From Table 3 it is seen that the Fieller limits for
w,, W,, W, produce a frequency of errors which in most
cases is higher than the admitted level of 59,. Al-
though a certain convergence to the admitted level is
observed, which is more pronounced for w, and w,
than for w,, even with N = 2000 this limit is not
attained in all cases. On the contrary, the error fre-
quency for w¥ and w} agrees well with 59%,. This is
true for the Fieller limits as well as for the Gauss
limits.

3. Tests of Significance

Different tests can be constructed for the class of

null hypotheses Hy: w;, = w; (1,1 = %,y,2; § 71)

against the alternatlves Hy: w; #w and then be
compared with respect to thur power, w; is asym-

ptotically normal for N == N; — co, whereas Var( 5
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and cov (w;, w;) — as calculated
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according to the rule given
above — converge stochastically

towards var (i;) and cov (i;, w;)

respectively. Therefore a criti-
calregion R for H, may be chosen
with reference to the u-test for
normally distributed variates. If

FIELLER (p,-055)

S f Y

o ////é\ﬂ- 2000 T 7 )08

‘ {o /T80

S /000 e - — 06
VA =010

7 490 —— i I S s e 1 14

- - ! S SR 1V

R et A a
Voi — 204y + 0} Od
(2.18)

is used as the test statistic, then
the critical region R consists of
all those pairs w;, w;, for which

Prob {|6] > .} = ¢,

where ¢ is the admitted error o

(219) | ./, ,,gf_"L,WW

of the first kind and d, = 1.96

for £ = .05. It is expected that
(2.19) holds true approximately
under H, for N and N, being

large. On the other hand, it is

not expected that under H, the
test statistic 6 has Student’s

distribution, for the following

reasons: ; and @; are not nor-

mal; the expression under the
root in the denominatoris neither
distributed as a 4? nor are

degrees of freedom defined for it;

and this expression is not inde-
pendent of the nominator.

In order to examine the pro-
perties of this test, it was asked

for each run how frequently the
test statistic 4 falls into R if H,
is true. In this way an estimate
of the true error of the first kind
£* is obtained from each run and this is hoped to be
equal or very near to ¢ {= .05).

To do this, for any of the 8 combinations of p, and ¢
the equilibrium population under the condition
w, = w, = w, = 1 was ascertained. For each popu-
lation N and N, (N, = N) were graduated from 40C
to 2000 as before, and for each of the resulting com-
binations of $,,, # and N a run of 1000 simulations was
performed. From each run the estimates &£* were
determined for the three null hypotheses v, — w, =
=0, w, —w, =0, w, — w, = 0 and then compared
with .05. The agreement was satisfactory in all cases
except for p, = .85, = .04, N = 400 and N = 800,
where the largest deviations were obtained (*=.075
and .077).

Afterwards the frequency of ¢ falling into R was
evaluated in cases where H, in fact is not true, i.e.,
where w; and w; are different. This frequency is now
an estimate of the probability of rejecting H,, when
indeed H, is false, such that D = w; — w; has a

Fig.

1 = 10
o A,//f 08
- 5"/// // 06
// dmmy
Z 02
s 05 04

m*

2. Power function graphs for quotient tests “duc to Fieller” and

certain non-zero value. Taking into account a series
of different values of D, the corresponding frequen-
cies respresent points which are near to the power
function g(D) of the test under consideration.

This test, which is based on D, shall be denoted as
“difference test”’. Its power function g(D) will be
represented as a function of D, although the power
function depends not only on D, but also on the para-
meters w; and w; themselves. To speak in geometri-
cal terms, one has to imagine a power function sur-
face, each point of which has three coordinates w;,
w;, g Wwhich are non-negative numbers: w; > 0,
w; >0, 0 <<g<<1. One of the properties of this
surface is that g = &* for all w;, w; with w; = w;, i.e.
g(0) == e*. The power functions considered here arise
from intersections of this surface with cylindrical
surfaces, which are erected on a curve in the w;,
w;-plane, starting at a point where w; — w;.

Another possibility to compare w, (and w, resp.)
with fvy arises from confidence intervals, inasmuch



85

If the quotient test for w¥ and

w¥ is based on Fieller’s limits

with respect to the alternative

hypothesesin Table 1, it is found
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that the empirical frequencies
of rejecting H,, are exactly the
same as those of the correspond-
ing difference tests for w, — w,
and w, — w, respectively in

almost all runs of simulation.

Inspection of individual experi-
ments confirmed that (@;, W)
falls into R, if and only if the
number 1.0 is included in the
critical region of the quotient
test “due to Fieller”. Only a
few exceptions to this rule were
observed when N = 400. It

seems, thus, that both tests are

asymptotically equivalent.
06 To summarize, the following
tests were performed in each
04 experiment and the estimates £
0 d of power determined from each
’ i run:
i |
10 : ; i — —_— Hyw, —w, =0,
[ e B . A N/, | w,—w,=0, w,—w,=0;
f : / / : I y
7] R S—— ’ ,_,,;,,; - ,,,?_ /| ! i th 'L(’)%; —1=0, wf —1=0
ol i o100 ’ (due to Fieller) ,
2l ‘ NI, _7|L ‘ HY:w¥ —1=0, wf—1=0
' | ‘ | | - (due to Gauss).
- ‘ . ; Ll |
09 08 07 05 05 04 10 09 08 07 05 05 O For illustration the power func-

Wx*

“due to Gauss”’ for different combinations of p,, ¢, and N (= N,)

as a confidence interval may be considered as a test
of significance. In our case the null hypothesis H:
w; —w, =0 ({ = x,z) is to be converted into the
form (w;/w,) —1 =0 or H§: wf —1=0. Hf will be
accepted or rejected according to whether or not the
number 1.0 is contained within the confidence limits
which are determined for w¥* from the ratio of esti-
mates i, W,, i.e., from #f = i,/i,. In other words,
the critical region R* consists of the set of all those
pairs (ig;, i,), for which the confidence interval does
not contain 1.0. This test will be called a “quo-
tient test”’. The confidence limits may be deter-
mined either ““due to Fieller” or ‘“‘due to Gauss”.
Both methods were applied in each individual simu-
lation experiment.

Whenever w¥ = 1 is true, the number 1.0 should
be outside the confidence limits with probability &
(= .05). This requirement was proven to be satisfied
for the 8 equilibrium population with w, = w, =
w, = 1, as described above.

tion graphs of the quotient tests
“due to Fieller” and “‘due to
Gauss’”’ are given for all 8 com-
binations of p, and{, and for different sizes of
N (= N,) in Fig. 2.

As a marker for comparison we may use that value
of w¥ for which the (estimated) probability of an
error of the second kind is just .05. This means that,
if the true value w¥ in fact deviates from 1.0, then
the probability of rejecting the null hypothesis is
.95. For N = 2000 these critical values are marked
by vertical broken lines. It is evident that a test is
the more powerful, the smaller the deviation from 1.0,
which it can detect at the same level of error of second
kind. From the figures it is seen that both quotient
tests have more power at p, = .55 than at p, = .85,
and that within each p,-group the power decreases
as t decreases. On the other hand the power naturally
depends on N, especially if N is not large.

As an example we assume that the errors of the
first and second kind shall each be .05. With N=N,=
= 2000 a fitness reduction of the homozygotes can
be detected with probability .95, if the true fitness
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Table 3. Relative frequencies of covvect statements with
approximate 95% confidence intervals
due to Fieller and Gauss

wy Wy W w¥  w¥ w¥  w¥
N
(Fieller) (Fieller) (Gauss)

Population No. 4

400 .896 .863 .888 950 .948 944 .942

800 .893 .842 .912 .947 .956 931 .941
1200 004 .887 .918 048 .957 943 .953
1600 .893 .874 .920 041 .963 949 .955
2000 .932 .884 .936 .060 .956 .056 .948
Population No. 21

400 009 .822 .886 .951 .953 .944 .941

800 012 .851 .902 .947 .953 945 .954
1200 .900 .851 .895 .950 .950 942  .948
1600 .896 .857 .908 047 .962 046 .956
2000 940 .792 .948 944 .940 952 .940
Population No. 29

400 915 .849 .893 .939 .952 .947 .937

800 .946 .874 .907 949 .959 .965 .954
1200 952 .871 .907 958 .952 .961 .959
1600 056 .871 .941 955 .950 955  .961
2000 952 .876 .912 048 .948 .956 .960
Population No. 49

400 937 .849 .850 .950 .967 952 .943

800 .946 .873 .860 .937 .969 .971 .95%0
1200 .959 .865 .887 .946 .950 .968 .953
1600 062 .888 .913 948 .955 .961 .951
2000 .956 .892 .908 044  .972 .968 .964

w¥is .73 or less. In order to make a statement at the
same level of security if the true fitness w¥ is about .8,
the sample size must be increased tremendeously.

From the figures it is seen furthermore that gener-
ally the quotient test due to Gauss is more powerful
than the test due to Fieller. Especially for values of
w¥ near to 1.0 the power function of the Gauss-test
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increases more rapidly, and the 959%,-threshold is
reached for values which are nearer to 4.0 than in case
of the Fieller-test. This means that under the same
experimental conditions it is easier to detect a certain
fitness difference with the Gauss-test than with
Fieller’s.

The Case N; < N. Under natural conditions N,
is generally much smaller than N. Asis expected, the
approximation of the empirical d.f.s of the fitness
estimates by normal d.f. s is less satisfactory than in
the case N; = N. We may ask now for the effect
on tests of significance. In Fig. 3 {lower part) some
power function graphs are shown for p, = .55, {=.10
(population 4, Table 1). For comparison the corres-
ponding graphs under N; = N from FIig. 2 are given
again. As may be observed, the effect is a considerable
one. The critical fitness value wj, which can just be
detected with probability .95 at N = 2000, N, == 400,
is now .68 (.73 with N = N; = 2000).

Discussion

It is difficult to draw direct and concrete conclu-
sions from this body of simulation data about the prac-
ticeof field experiments. Natural populationsin general
are not in equilibrium, as was assumed here. But this
argument has norelevancy to the stochastic properties
of fitness estimators. Of practical interest is mainly
the detection of true deviations of #¥ and w¥ from 1.0,
if they exist. At the same time one must avoid the
assertion that such deviates exist when they do not.

Among the procedures described above the most
simple one denoted as ‘““quotient test due to Gauss”
turned out also to be the best one with respect to this
purpose. Within the range of population parameters
(Pu» & f+7) which was under consideration here, the
power of this test depends more on the sample size
than on the parameters. However, in order to keep
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Fig. 3. Power function graphs of quotient tests ‘“‘due to Fieller” and ‘“due to Gauss” for p, = .55, #= .10. Lower part:
N, = 400, upper part: N; = N for comparison (from Fig. 2)
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the nominal probabilities of an error of first kind,
P, as well as £ (and f3?4) should not have extremely
large or small values. Furthermore, ¢ should not be
too small if usual sample sizes are employed.

Because of the relatively small sample size which
is available for estimating the outcrossing rate ¢, the
only variables which are quite at the experimenter’s
disposal are the sizes of genotype samples in gener-
ations # and # 4 1. Those amounts of the sizes
which are necessary in order to guarantee a certain
probability of errors of the second kind may be
evaluated by means of simulation experiments. In a
step-by-step procedure from provisional estimates
and confidence intervals for w¥ and w¥, the power of
the test can be evaluated for a set of compatible
hypotheses about w¥ and w¥. Then it must be decid-
ed if more individuals are to be included in the sample.

The program for the estimation of the power, which
is written in Fortran IV, may be obtained from the
author.

Zusammenfassung

Im ersten Teil dieser Arbeit* wurde eine alge-
braische Darstellung von Reproduktions- und Selek-

* Vol. 40 (1970), No. 1, S.11—17, dieser Zeitschrift.
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tionsvorgdngen in Populationen diploider Organis-
men gegeben. Im zweiten Teil werden die statisti-
schen Eigenschaften einer speziellen, von Hayman
stammenden Schitzfunktion fiir die Fitness betrach-
tet. Es werden verschiedene Moglichkeiten zur Be-
rechnung von Konfidenzintervallen und zur Durch-
fihrung von Signifikanztesten angegeben und mit
Hilfe von Simulationsstudien gepriift.
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