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Summary. In part I of this paper (Theoret. Ap]3I. Genetics 40, ]3. 11 -- t 7) an algebraic trr of reproduction and 
selection processes in populations of diploids was given. Here the statistical properties of a special fitness estimator, 
which is due to Hayman, are considered. Confidence intervals and tests of significance concerning hypotheses about 
fitnesses are established and checked by computer simulation studies in part  III .  

The genotype frequencies :(i~ and :") j n  J n + l  are not 
known exactly in real experiments,  but  es t imated by  
means of sampling. This is also true for the parameters  
#i (rate of outcrossing, recombination frequency etc.) 
which appear  in q), the transit ion operator.  There- 
fore, f~i) and f ~ t  are random variables, while ~vi is 
a function of random variables (for meaning of sym- 
bols see par t  one). According to (t.44) or (t.44.a) - -  
see par t  one of this paper  --  wi is itself a random vari-  
able. What  can be said about  the precision of the 
fitness est imates ? 

This question obliges to distinguish between tile 
true (but unknown) fitness of a genotype and its esti- 
mate.  We arrive at the following problem: Given a 
numerical difference of the fitness est imates of two 
genotypes, as calculated according to (1.44) or (t .44.a) 
from observed genotype frequencies, would it be 
correct to conclude tha t  the corresponding true fit- 
nesses differ ? And if so, what  can be inferred about  
the amount  of the true difference ? 

There are a lot of examples which furnish evidence 
tha t  distinct genotypes (or types of gametes) differ 
in their (true) fitnesses with respect to the same envi- 
ronment.  Today this kind of behavior of a popula- 
tion is accepted to be the rule rather  than the excep- 
tion. Nevertheless it seems to the author  tha t  in 
m a n y  cases this experience is based more on repeated 
observations of the trend of this behavior  than on 
stringent tests of significance. The general difficul- 
ties of making I such a significance test  were mention- 
ed in the introduction of par t  one. This implies tha t  
studies of impor tan t  aspects which depend on judging 
of single experiments  (as for example the dependence 
of natural  selection on locality and season) are limited 
b y  the lack of such tests. 

* Gekiirzte Fassung einer der Mathem.-naturwiss. 
FakultAt der UniversitAt Tfibingen eingereichten Disser- 
tationsschrift (Tell I I  und III).  

Populations which were investigated by  Allard 
and coworkers (lima bean, barley) retain an amount  
of genotypic variabi l i ty after  m a n y  generations which 
can hardly be explained by  outcrossing (2% in bar-  
ley, 5 - -8% in lima bean). I t  was postulated there- 
fore tha t  heterozygotes are favoured by  natural  selec- 
tion. Fitness est imates were calculated according to 
(t.44) and (1.45). The proport ion of random out- 
crossing, t, however, was est imated by  means of 
a separate experiment  and the est imate assumed to 
be equal to the true value. Thus, in (t.45), t is used 
as a constant parameter  instead of a random variable. 
Under this condition the fitness est imators were 
presented as max imum likelihood estimators.  Fur-  
thermore,  the variance-covariance matr ix  was speci- 
fied (Allard and Workman,  1963). 

With respect to the details of experimentat ion the 
use of t as a paramete r  instead of a random variable 
implies the neglect of a considerable source of sampl- 
ing fluctuation of the total  fitness estimates. Apar t  
from this, information is needed about  the joint 
sampling distribution of the fitness est imates in order 
to utilize fully the variance-covariance matr ix  (e.g. 
for construction of tests of significance). With re- 
ference to the m.1.-property this means information 
about  the speed of convergence towards normally 
distr ibuted random variables. In other words: 
What  size of sampling is required for "sufficient" 
normal i ty  of the joint distribution of fitness estima- 
tes ? The chief point is tha t  errors of the first and 
second kind associated with confidence s ta tements  
and (formally executed) tests of significance may  
deviate from their nominal values if the condition of 
normal i ty  is not satisfied. 

Confidence intervals and tests of significance have 
not yet been established by  Allard. Wha t  follows is 
an a t t empt  to supplement  the extensive studies of 
Allard's group with respect to the statistical aspect 
of the problem. 
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We refer to the experiments  as described by  Allard 
and Workman  (t963). I t  should be added, however, 
tha t  the sample size N~ for est imation of the propor- 
tion of outcrossing was small as compared with the 
sample size N for est imation of genotype frequencies 
in generations n and n + 1. In  general, N~ was 
200--500 seeds, and even 1~0 seeds were used in 
some cases (W6hrmann, Jana ,  pers. commun.),  
whereas N varied from 2500 to 5000. 

The quant i ty  t was then est imated by  the ratio 

= 7 ,  (2.t)  
P 

where ~r is the observed proportion of heterozygote 
individuals among the progeny of the N~ recessive 

seeds, and p the est imated genotype frequency in 
generation n (estimated from a sample of size N). 
The variance of [ i s  

var(t) -~(plZH(l--tl)+(H)sP('NP)N ~ 4Nf~"(p)~" 

(2.2) 

The last te rm on the r ight-hand must  be added be- 
cause the gene frequency is est imated not by  counting 
of single genes but  of genotypes.  

T h e  F i t n e s s  E s t i m a t o r s  

First  the est imators corresponding to (1.43) and 
(t.45) with c ---- t are considered, with all parameters  
being subst i tuted for by  their  estimates.  Wri t ing 
(x,,, y., z.) i n~ead  of̂  (f~l~ ~.f(~),J~13)~, and (x.+l, y.+a, z.+a) 
instead of t.u~ ~ r ~ in order to simplify the tUn+l ,  J n + l ,  J n + l l  
notation,  we have 

X n + l  Xn+ 1 

( ( ' )  
~Oy ~ y n + t  __ y n + t  , ) ,  ~s, 2i x.+ y. z , ,+~y.  +-~O-i)y,, 

Zn+l  Zn+l  

(2.3) 
With reference to (2.1) it is evident tha t  i is not inde- 
pendent  of (x.,y~, z~), since p-~x .+( l /2 )  y.. On the 
other hand, H is independent of (x~, y., z.). The joint 
distr ibution of x~+~, y.+~, z~+, is multinomial,  which, 
for N--> oc, is known to converge to a singular three- 
dimensional normal  distribution. The same holds 
for x. ,y . ,  z.. The vector  (x.+~, y.+~, z.+~) is inde- 
pendent  of (x~, y~, z.). 

The nominator  and the denominator  in a fitness 
es t imator  (2.3) are therefore independent random 
variables. The denominators  are rat ional  functions of 
random variables, which are asymptot ica l ly  normal  
but  not independent.  The question arises as to whe- 

ther the fitness est imates (2.3) themselves may  be 
expected to be asymptot ica l ly  normally distr ibuted 
under these circumstances. 

Rat ios  a n d  P r o d u c t s  o f  R a n d o m  V a r i a b l e s  

If  X and Y have a joint two-dimensional normal  
distribution with means rex, my, variances r r and 
coefficient of correlation ~, then the density function 
of Z-----X/Y is given by  Fieller's formula (t932), 
which specializes to the density function of Cauchy's  
distribution for m x = my = 0. I t  is well known tha t  
the la t ter  has infinite moments .  The same is true for 
the distribution of Z. According to Fieller this diffi- 
culty m a y  be overcome by  taking notice of the fact 
tha t  X as well as Y is restricted to some limited inter- 
val of positive values in m a n y  applications. This is 
true in the case of fitness estimates,  where X and Y 
are identified with the nominator  and denominator  
respectively. Here we have 0 ~ X ~ I and 0 ~  Y___I. 
Fur thermore  it may  be assumed tha t  a constant  
e ~ 0 exists, such tha t  0 < e ~_~ Y ~ 1. 

Another  supposition in Fieller's consideration is 
tha t  r ~ my, which may  be seen also to hold good 
in our application for sufficiently large sample size. 
If  m, and my are positive and large compared with a~ 
and ay respectively, then the predominant  par t  of the 
mass of the joint distribution of (X, Y) is contained 
in the interior of an ellipse which in turn is s i tuated 
within the ( + + ) - q u a d r a n t  of the system of coordi- 
nates. If  now the joint (normal) densitiy function is 
taken to be zero for all (X, Y) outside this ellipse, 
one m a y  ask about] the effect of this curtai lment  
upon the density of Z. I t  is clear tha t  the moments  
of Z are now finite. Fieller's conclusion is tha t  the 
area under the density curve is increased near  the 
mode at the expense of the tails, but  tha t  for suffi- 
ciently large diameters of the surrounding ellipse this 
has no visible effect on the appearance of the distri- 
bution. For an estimation of the amount  of distortion, 
see the original paper. 

Now the moments  of the curtailed distribution of Z 
m a y  be approximated  by  the method of Merrill 
(t928). Using the decomposition X--~ m x + ~, 
Y = my + ~/, where E(~) ----- E(~/) ---- 0, var  (~) = a ~ 
va t  (~/) = a~, and ~(~, 7) = 0, we have 

m y + ~  my _ ~ t + �9 (2.4) 

For I~l ~ my this m a y  be expanded to 

,~, ~ t - ~ + ~  m~+ . . . .  (2.5) 

The expectat ion E(Z") of the n-th power of this expan-  
sion is taken as/~,,, the n-th moment  about  zero of Z. 
Merrill retains the products  ~" ~ as far as the eighth 
order and takes for their mean value the product  
moments  of the normal  surface. For  the justifica- 
tion of this procedure, see Fieller (1932). 
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Here the expressions for the first five central 
moments  /~i = E [(Z -- E(Z)) i] of Z are reported. 
For abbreviat ion 

Z0 ~nx o'x __ ay , / 

/52 = v~ --  2 q v, v~ + v~, { (2.6) 

2 - v v - e v .  _ v ~ - o v *  ( 2 < t ) .  

Then 

~; = E(Z)  = Zo [~ + v,  (v, - O v,) 
'~ 4 6 • (~ + 3 v; + ~5 v~ + ~05 vv)] 

~ = z~ p, [l + v ' ~ (54 ~ + ~ 5) v (5 ,>+3)  +vv 
+ v~ (591 ;t~ + 105)] 

t~3 = Z~op~/~ vy~ [6 + 4v~ (11 2 ~ + 18) (2.7) 
+ v~ (1044~ 2 + 828)] 

~ = z~p~ [3 + 3ov~ (3~ ~ + t) 
+ v~ (633,1~ + 2106,t~ + 315)] 

z~.~l=,, ~ [60 + ~ (1580), ~ + t380)] 

Fur thermore  it is 

2 (1222 540) --  - - v ~ 2 ~ [ 3 6 - - v y  

+ 4v~ (--  146,t 4 + 4502 * + 1917)] 

_ _  / ~ 4  _ _  P2 /,.~ 3 + 3 [ v ~ ( 2 0 ~ + 4 )  

+ v~ ( - -142  ~ + 404~ 2 + 42)].  

From this we obtain 

skewness ~ = ~/~ (2.8) 

excess Y2 = r2 --  3 (2.9) 

The expressions for fll and/52 show tha t  skewness 
and excess of the distribution of Z depend on vy and 
only, and tha t  if v~ -+ 0,/*a and/ '5  as well as ~1 and 72 
converge to zero. 

Merrill has given some conditions under which the 
distribution of Z will itself be close to the normal.  
In general this is true for X and Y following the nor- 
mal law closely, and if v x and v~ as well as ~ are small. 
On the other hand, in a footnote in Merrill's paper,  
K. Pearson called at tent ion to the observation tha t  
comparat ive ly  slight deviations from the bivar ia te  
normal distribution of X and Y m a y  lead to re- 
markable  divergence from normal i ty  in the distri- 
bution of Z. 

In our application we use another  s ta tement  on 
quotients of independent random variables, which is 
due to Curtiss (t941; theorem 6.t):  
Let  the independent variables X~ and Ya have re- 
spective distribution functions F~(x) and Gr which 
depend upon the two parameters0~ and/5. Let  H,, ~(z) 
be the distribution function of the quotient  Z,, a = 
X ~ / Y  a. If there exist two chance variables X and Y 
with respective distribution functions F(x) and G(y) 

R. J. Lorenz: Theoret. Appl. Genetics 

such that  lira F~,(x) = F(x) at all points of continuity 
6~-~OO 

of F(x), and lim Ga(y) = G(y), at all points of con- 
fl--~oo 

t inui ty  of G(y), then 

lim H~,a(z) = lim lira H~,~(z) = lira lim H~,a(fl) = H(z) 
~-r ~--~oo fl-->oo f l -~oo  a--+oo 
fl--~oo 

at all points of continuity of H(z), where H(z) is the 
distribution function of the variable X~ Y. 

With regard to products of random variables a 
theorem of Aroian (1947) should be mentioned:  
If  X and Y have a joint normal  distribution and if 
- - t  + e ~ 0 ~ l  (~3>0), then the distribution of 
T = X �9 Y approaches normal i ty  for v, -~ 0, v r -+ 0. 

According to Aroian, this theorem m a y  be ex- 
tended to the case tha t  X and Y are asymptot ical ly  
normal.  As a special case we notice tha t  the square 
of a (asymptotically) normal  var iate  is asymptot ica l ly  
normal if its coefficient of variat ion converges to zero. 

Appl icat ion to the Fitness Estimator 

With respect to the theorems of Curtiss and of 
Aroian it follows from (2.3), that  *?~, @, ~ and also 
~ = z?~/@, ~* = wd@ are asymptot ical ly  normal 
for N ~ oo, N 1 --~ oo. Moreover it  has been shown 
by  P. M. Geppert  (1969, pers. commun.) that  z~,, z;.y, 
z?~ are max imum likelihood es t imators  under the same 
condition. On the other hand, in Allard's experiments 
N 1 is bounded and H is very small (.0t to A), whereas 
N is very large as compared with N 1. Under this 
condition the distribution of t is asymptot ical ly  bino- 
mial for N --~ o% and the denominators in (2.3) are no 
longer asymptot ica l ly  normal.  

This means tha t  if t is es t imated from an experi- 
ment  of small size (?Ca) , certainly the fitness estima- 
tors themselves are not asymptot ical ly  normal  for 
N - +  oo. 

But  if [ i s  taken as a constant,  the corresponding 
est imate of the fitness variance does no t  contain tha t  
component  which results from [ being a random 
variable. The component  even increases in propor- 
tion to the total  var iabi l i ty  of the fitness est imate 
if N increases. Thus it may  be speculated tha t  the 
formulas for the variances of fitness est imates which 
are used by  Allard tend to become unreliable at just 
the point when N becomes large, provided tha t  N 1 
remains small. 

In order to s tudy the implications of these restric- 
tions in more detail, a system of computer  simulations 
of the est imation procedure was performed by  means 
of pseudo-random numbers.  The program was built  
up with regard to the following special problems: 

1. Evaluat ion of empirical distribution functions 
(d.f.) of wx, @, w,, and also for ~* = *~,/~y, ~..* = 
-----~J@ and of the corresponding statistics (mean, 
variance, skewness, excess). 
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2. Evaluat ion of the d.f. s of those normal distri- 
butions, which are expected to be the asymptot ic  
distributions. 

3. Evaluat ion of confidence intervals for the true 
fitness (under normality) and est imation of corre- 
sponding probabilities of error. These m a y  differ from 

the theoretical ones if the normali ty  condition is not 
satisfied. 

4. Evaluat ion of tests of significance for detecting 
of fitness differences and calculation of the power 
functions of these tests for a number  of different com- 
binations of genotype frequencies and sample sizes. 

Part III. Simulation Experiments 

I. Empirical  Distribution Functions 
of ~v x, fry, ~v,, ~v*, ~v*~ 

Two samples, each of size N, from mult inomial  
distributions ::(') r(y) :~>~ and /r(,) r(y) r(*) ~ J .  , i n  , J .  ! ~Jn+l,Jn-'r-t,Jn+l] were 
generated by  means of equally distr ibuted random 
numbers.  These samples represent empirical geno- 
type frequencies (x., y . ,  z.) and (x.+~, y.+~, z.+1) in 
generations n and n + t .  Another set of N 1 equally 
distr ibuted random numbers  was used to produce a 
sample from a binomial distribution with mean N~H, 
where H is determined such tha t  t = H / p .  equals a 
fixed value give n in advance;  p .  is predetermined to 
be p ,  - -  f(~) - - : ~  + (t /2) f~(Y). The simulated est imate of t 
is then given by  t = H / p ,  = [ t / (x ,  + ( t /2)y,) .  

From these numbers  the quantit ies ~x, @, ~, and 
~ ,  ~y, ~ are calculated according to (2.3), and the 
simulation of an individual field experiment  is com- 
pleted. In order to gain a good approximat ion of the 
distributions of ~ ,  @, and ~ ,  1000 simulations, 
each with a new set of random numbers,  were per- 
formed for the same basic genotype frequencies and 
ratio of outcrossing. The mean and the central  mo- 
ments  of order 2, 3, and 4 were est imated for ~ ,  wy, w~ 
from the corresponding sample of t000 simulated 
estimates.  At the same time a set of 1000 vectors 
of " reduced"  est imates ( ~ ,  ~, ~ )  were obtained, 
but  no moments  were calculated from them. 

Different combinations of the parameters  {f~")} 
and {f,(~} and oft  were used to  get an impression of 
how the empirical d.f. s depend upon the parameters .  
These combinations were selected in the following 
manner :  Different sets of p ,  and t are given in ad- 
vance. For any given p~, one of the three genotype 
frequencies in generation n may  be taken at will, for 
example ~,:(~). Furthermore,  only populations in 
equilibrium were considered, i.e. :(/) ~-(i) Under J n + t  ~--  j n ,  �9 

the equilibrium condition the quantit ies w~ and w~ 
(as well as wx, wy, w~) are uniquely determined by  

t f~x)~ 
( P . ,  . , .  , .  

Four different rates of outcrossing t = .t0, .08, 
.06, and .04 were used at two different levels of gene 
frequency pn = .5~ and .85. For any  of these eight 
combinations five to eight different genotype fre- 
quencies f,(') were selected in such a manner  tha t  the 
corresponding values of w~ (and w~) form a sequence 
of decreasing levels. Thus a to ta l i ty  of 51 combi- 
nations was obtained (see Table t). 

Fur thermore  N and N~ were varied to demonstra te  
the dependence of the statistics and the tests upon 
sample size. In the main group of simulations N1 

was taken to equal N,  and five different levels were 
employed for each of the ~1 combinations mentioned 
above:  N - - - - N  1 = 400, 800, t200, t600, 2000. For 
populations no. 21, 29, and 49 (Table 1) an additional 
size of 4000 was used. 

The assumption N 1 ----N was made in order to 
simulate the asymptot ic  behavior  of the fitness esti- 
mates  under normal i ty  condition. In contrast  to this 
more theoretical case a number  of populations 
(No. t, 2, 3, 4, 5) were considered also under the con- 
dition tha t  N 1 remains fixed at N 1 = 400, whereas N 
varies as before. 

To summarize,  there are 283 different combina- 
tions in all of the parameters  p, ,  t, f~)  and N(N1). For 
each of these designs a run of 1000 individual simu- 
lations was accomplished. 

After accomplishing of any run, from the resulting 
sample of 1000 vectors (wx, wy, w,) the following 
statistics were calculated for each component:  mean, 
mean square deviation, skewness, and excess. For 
the same parameter  combination, the corresponding 
" t r ue"  parameters  according to Merrill's formulas 
(2.7) to (2.9) were also calculated. In addition, the 
Merril l-parameters of ~** and ~,* were calculated for 
each paramete r  combination. 

I t  should be noticed tha t  the comparison of the em- 
pirical statistics with their  corresponding Merrill- 
parameters  is asymptot ical ly  correct only because 
of the supposition in Merrill's formulas tha t  a quo- 
t ient ' s  nominator  and denominator  are str ict ly nor- 
mal  variates,  whereas for small values of N and N 1 
the nominators  and denominators of the fitness esti- 
mators  are certainly not. I t  is to be expected, how- 
ever, tha t  the statistics approach the parameters  for 
increasing N and N 1. 

To calculate the Merrill-parameters, the coeffi- 
cients of variat ion of the nominators  and denomi- 
nators  are needed. In  addition, for &~* and ~,* the 
coefficients of correlation between 9), and ~y and 
between *?~ and &y respectively are needed. Variances 
and covariances of functions of random variables 
were calculated by  the approximate  formulae (Cram6r 
t946) 

~g~g  
var  (g) ~ x'~ ~. ~ ~ cov (~i, ~i) (2.10) 

whereg g(~l . . . . .  ~k), /zi ---- E(~i), and ~ O& m 

Og Oh cov(g,h)~ 

where h = h(~ 1 . . . . .  ~k). 
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Table I. Equilibrium populations used for simulation. 
Pn : gene frequency, t : proportion of outcrossing 

Pop 
Pn t l~' 1~' 1~' w. wv ~ ~ ~ No. 

�9 55 .10 .500 .1o0 .400 .9945 1.o582 .9932 .9398 .9385 1 
.480 .14o .380 .9722 1.2444 .9651 .7812 .7755 2 
�9 450 .200 .350 ,9370 t.4337 .9204 ,6536 .6420 3 
.400 .30O ,30O .8738 t.626o .8386 .5374 .5157 4 
.3O0 .5o0 .200 .7268 1.8215 .6395 .3990 .3511 5 

�9 55 ,08 .510 .080 .410 .9965 1.047t .9956 .9516 .95o8 6 
.500 .to0 .400 .9858 1.1682 .9823 .8438 .8409 7 
.480 .14o .380 .9639 1.3462 .9548 .7t6o .7093 8 
�9 450 .200 .350 .9294 t.5198 .911o .6115 .5994 9 
.400 .300 .300 .8673 1.6892 .8306 .5134 .49t7 10 

.55 .06 .520 .060 ,420 .9980 t.0363 .9975 .9631 .9626 11 
�9 510 .080 .410 .9877 t.1887 .9847 .8309 .8284 12 
.5O0 .1oo .40O .9772 1.3038 ,97t7 .7495 .7453 13 
.480 .140 .380 .9557 1.4660 .9447 .6519 .6444 14 
�9 450 .2o0 .350 .9218 1.6t68 .9017 .5702 .5577 15 

�9 55 .o4 .530 .o40 .430 .9991 t.o256 .9988 .9741 .9739 16 
�9 525 .050 .425 .9941 t.1416 .9928 ,8709 .8697 17 
.520 .060 .420 .9892 t.2346 .9866 .8012 .7992 18 
�9 515 .070 ,415 .9841 1.3109 .9804 .7508 .7479 19 
.510 .080 .410 .9791 1.3746 .9741 .7123 .7087 20 
.500 .1oo .400 .9688 f.4749 .9613 .6568 .6518 21 
.490 .120 .390 .9583 1.55o4 .9482 .6181 .6116 22 

.85 .1o .825 .050 .125 .9988 t.0471 . 9 9 2 1  .9588 .9524 23 
.822 .056 .122 .9968 1.1045 .9787 .9024 .8861 24 
.820 .060 .120 .9954 !-1429 .9697 ,8710 .8485 25 
.810 .080 .110 .9887 1.3008 .9224 ,7601 .709t 26 
.8o0 .100 .100 .98t5 1.4209 .8730 .6907 .6t44 27 
�9 790 .120 .090 .9750 t.5094 .8163 .6459 .5408 28 
�9 770 .160 .070 .9610 1.641o .6914 .5856 .4213 29 

.85 .08 .830 .040 .t30 .9993 1.0309 .9954 .9693 .9655 3o 
.825 .050 .t25 .9960 t.1521 .9743 .8645 .8457 3t 
,820 .060 .120 .9927 1.250o .9524 .7942 ,7619 32 
,815 .070 .115 .9894 1.33o8 .9296 .7435 .6986 33 
.810 .080 .1t0 .9861 1.3986 .9061 .7o51 .6479 34 
.8OO .100 .lO0 .9794 1.5060 .8562 .6503 .5685 35 
�9 790 .120 .090 .9727 t.5873 .8021 .6128 .5053 36 

.85 .06 .833 .o34 .133 .9984 t.087o .9899 .9185 .9t07 37 
.830 .040 .13o .9965 1.173o .9778 .8495 .8336 38 
,825 .050 .125 .9933 1.2887 . 9 5 7 1  .7708 .7427 39 
.82O .060 .t20 .990O 1.3793 .9357 .7t78 .6784 40 
.8t5 .070 .115 .9868 t.4523 .9134 .6795 .6290 41 
.810 .080 .110 .9835 1.5t23 .8903 .6504 .5887 42 
.800 .100 .t00 .9770 1.6051 .8414 .6087 .5242 43 

.85 .04 .838 ,024 .138 .9986 1.1050 .9918 .9038 .8976 44 
�9 837 .026 .t37 .9980 t.1463 .9879 .8707 .8619 45 
.835 .030 .135 .9968 1.2195 ,9804 ,8174 .8039 46 
�9 833 .034 .133 .9955 1.2821 .9726 .7765 .7587 47 
,831 .038 .131 ,9943 t.3362 .9648 . 7 4 4 1  ,7220 48 
.827 .046 .t27 .9918 t.4250 .9487 ,696o .6658 49 
.820 .060 .120 .9874 t-5384 .9195 .6418 .5977 50 
.800 ,100 .!00 .9745 1.7182 ,827t .5672 .4814 51 

Theoret ica l  and  empir ical  values  are shown for the  
runs  of popula t ion  2t in Table  2. I n s t a n d  of the mean ,  
the bias is no ted  there, this  be ing the  difference be- 
tween the  expected and  the t rue  va lue  in  the Merrill 
case, and  the difference be tween the observed sample 
mean  and  the t rue  va lue  in  the empir ical  case. 

F r o m  Table  2 i t  is seen t ha t  the theoret ica l  and  
empir ical  values  of the bias and  of the s t anda rd  de- 
v ia t ion  (s.d.) agree very  well, whereas empirical  skew- 

ness a nd  excess show remarkab le  f luc tua t ion  abou t  
their  respect ive pa rame te r  values.  I t  is difficult  to 
judge  these devia t ions ,  since tolerance l imits  for these 
s tat is t ics  are no t  known  unde r  condi t ions  of non-  
no rma l i ty .  If a compar ison is made  with the s tan-  
dard  error of skewness and  excess in samples of nor-  
mal  var ia tes  (Cram6r t946), the devia t ions  are found 
to be of an acceptable  order of magni tude .  Apar t  
from this, for all s ta t is t ics  a t endency  of convergence 
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Table 2. Population No. 21: Theoretical and empirical distribution parameters of f i tness estimates 

Bias Standard dev. Skewness Excess 

Merrill ernplr. Merrill cmpir. MerriU empir. ~Ierrill empir. 

wz 400 .00222 .00138 .06739 .06884 .20118 .32146 .09612 .43739 
8OO .OO111 .OO105 .04750 .O4846 .141O3 .26937 .O4716 .11971 

1200 .00074 .00054 .03874 .04070 .11482 .00594 .03124 --0.24499 
1600 .00055 .O0084 .03354 .03442 .09930 --0.03382 .02335 .01125 
2000 .00044 .O0043 .O2999 .02755 .08874 .02934 .01865 --0.04205 
4000 .00022 .00030 .02119 .02142 .06265 .16765 .00929 --0.01955 

wv 40O .03022 .03622 .31890 .30971 .66224 .51801 1.01437 .49378 
800 .01463 .01450 .21890 .21657 .43140 .4487O .44454 .15878 

a200 .oo966 .o1325 .177o9 .17663 .34310 .36351 .28244 .3o307 
16oo .00721 .0075o .15268 .15233 .29334 .38374 .20661 .21379 
2000 .oo575 .00621 .13619 .14495 .26039 .15397 .16278 --0.43242 
4o00 .00286 .oo291 .09581 .o95o3 .18142 .14683 .o789o -- 0.23115 

~z 4o0 .00308 .o0351 .08069 .o8273 .23459 .19559 .1323o .28179 
8oo .00153 .00153 .05681 .05731 .16386 .11913 .o6445 .02883 

1200 .00102 .00104 .04632 .04812 .13326 .15231 .04259 --0.11952 
t600 .00077 .00028 .04009 .03931 .11518 .20840 .03180 .27217 
2O00 .00061 .00052 .03584 .03162 .10289 .17359 .02537 --0.2O748 
40O0 .00031 .00018 .02532 .02486 .07259 --O.O594O .01262 --0.10134 

~ 4O0 .O3991 .2O26O t.86312 5.81713 
800 .01716 .12289 1.02889 2.07518 

1200 .01096 .09622 .77843 1.22437 
1600 .00806 .08172 .65o15 .86175 
2000 .00637 .o7228 .56941 .66302 
4000 .00311 .o5oo3 .38681 .30602 

w~ 400 .03843 .19855 t.81997 5.59516 
800 .01650 .12072 1.0o420 1.99312 

t200 .01053 .09459 .75952 1.17549 
t600 .00774 .08037 .63426 .8282o 
2000 .00612 .07109 .55544 .63638 
400o .o0299 .o4923 .37724 .29367 

to the  p a r a m e t e r  va lues  is recognized  wi th  increas ing  
N ( =  N~). 

The  s t a t e m e n t s  m a d e  a b o u t  p o p u l a t i o n  2t hold  
good  in al l  o the r  cases. F o r  i l l u s t r a t ion  some of t he  
emp i r i ca l  c u m u l a t i v e  d.f. s (c.d.f.) of *}x and  of ~ 
f rom p o p u l a t i o n s  4, 2 t ,  29, and  49 are  shown in Fig .  t 
for t h r ee  d i f fe ren t  s ample  sizes t o g e t h e r  wi th  the  
c.d.f ,  of t he  l imi t  n o r m a l  d i s t r i b u t i o n  (with w x and  w~ 
r e spec t i ve ly  as m e a n  and  wi th  s.d. as de r i ve d  f rom 
Merr i l l ' s  formula) .  The  f igures conf i rm w h a t  one 
would  expec t  f rom t h e o r y :  t he  speed  of convergence  
t o w a r d s  t he  l imi t  n o r m a l  d i s t r i b u t i o n  is l a rge r  in 
genera l  for  p ,  ----- . 55 as c o m p a r e d  wi th  .8L and  wi th in  
these  groups  in t u r n  i t  is l a rger  for t = A0 t h a n  for 
t = .04. On the  o the r  hand ,  the  convergence  is b e t t e r  
for wx t h a n  for g,~. The  f igure  for p o p u l a t i o n  49 shows 
in a d d i t i o n  the  c.d.f,  of @ as an  example  where  the  
g e n o t y p e  f r equency  j , e{Y~=f~  is e x t r e m e l y  smal l  
(.046). 

W h a t  is of more  i m p o r t a n c e  t h a n  pure  measures  of 
" n o n - n o r m a l i t y "  is the  poss ible  effect  of these  dev ia -  
t ions  on the  v a l u e  of conf idence  s t a t e m e n t s  a n d  
t e s t s  of s ignif icance,  a p r o b l e m  wi th  which  we will  
be concerned  in the  nex t  sect ions.  

2. Conf idence In terva ls  

A p p r o x i m a t e  conf idence  l imi t s  for the  t rue  f i tness  
va lues  were d e t e r m i n e d  accord ing  to  the  p rocedure  

of F ie l l e r  ( t944):  Le t  aga in  X a n d  Y be n o r m a l  
v a r i a t e s  wi th  E ( X )  = 2, v a r ( X ) =  a~ E ( Y )  = ~, 
v a r  (Y) ----- a~, cov (X, Y) ---- ax, y, and  0r = ~/~. Then  
a = X - -  a Y is n o r m a l  wi th  E(a)  = 0 and  v a r  (a) = 

a ,  2 - -  2 a a,,y + a s a~. F u r t h e r m o r e  

X - - ~ Y  
U = [/o'~--- 2 a a . ,v  + a 2 a} ( 2 . 1 2 )  

is n o r m a l  wi th  E ( U )  = O, v a r  (U) = 1. Thus  a con- 
s t a n t  u,  ~ 0 m a y  be se lec ted  such t h a t  

P rob  {lu[ ~ u,} = I - -  e .  (2.13) 

The  set  of al l  those  va lues  of a which  sa t i s fy  th i s  
e q u a t i o n  for g iven  x and  y c ons t i t u t e  a conf idence  
i n t e r v a l  for  a wi th  conf idence  coeff ic ient  t - -  e. The  
u p p e r  and  lower  conf idence  l imi t s  au and  as are  found  
as so lu t ions  of 

2 2 (u, a; - y=) o~ 2 - -  2 (u~, % y  - x y)  a + (u~ a~ - -  ~ x "~) = 0 ,  

(2A4) 

which  resu l t s  f rom the  i n e q u a l i t y  on the  lef t  h a n d  gide 
of (2.t3).  

To app l i ca t e  F ie l l e r ' s  t he o re m to  w,,  wy, and  wz, 
x is to  be  r ep laced  b y  x ,+ ,  (y ,+, ,  z,+~ resp.) ,  whereas  
y m u s t  be r e p l a c e d b y  ~,($~, ~z resp.)  ; w , ( % ,  w ,  resp.) 
is to  be  used  for a .  The  co r re spond ing  var iances  are  
to  be a pp l i e d  accord ing ly .  The  covar iances  vanish  in 
these  cases,  since n o m i n a t o r s  and  d e n o m i n a t o r s  are  
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independent. The variances are obtained by appli- 
cation of formulae (2.10) and (2.1 t), where the esti- 
mates are substituted for the true parameters. For 
example we have 

var (~)i) = [ at ' efS x) ' 8SSY) J X 

'_[var (') cov (', x.) cov <Ly., ][iO,.<.,| "l._al.,,)ul "'~l 
• icov (7, ~.) var (x.) coy (x., yn) 

I ~'I [cov (7, y.) coy (x., y,,) var (y.) 
(2./5) 

a~0~ 
The terms --ff etc. are functions of p,,  f~), and t, 

whereas the figures in the 3 • 3 -matrix are other 
functions of the same parameters and of H. In all 
these expressions the involved parameters are repla- 
ced by their estimates. 

Application of Fieller's theorem to w~ and w~ 
means to replace x by  ~ (~, resp.), y by  @, and 

_! ..... f , :  
- !  . . . . .  r-l~, 
Z---Ij 

- _ _  . 

Theoret. Appl. Genetics 

by w~ (w~ resp.). For (r~,y the covariances coy (~b x, t?y) 
and cov (~,, 6;,) respectively must be substituted, 
and var (wx) (var (~) resp.) is to be used for ~ and 
var (~y) for ~ ,  these all being determined according 
to (2.10) and (2.1 t). These expressions are functions 
of the population parameters, and again these are 
substi tuted by  their estimates, so that ,  for example, 

/ %  

we have the expression cov ( ~ , ~ )  instead of 
cov (~,,, %) .  

With this procedure, however, some of the condi- 
tions of Fieller's method are infringed upon. The 
estimates of variances and covariances, as obtained 
here, are not independent of the estimates of the 
ratios, as is required. Furthermore,  the nominators 
and denominators are only approximately normal. 
The simulation experiments tell us how robust against 
these deviations Fieller's method for determining con- 
fidence limits is. For each individual experiment the 
95%-confidence limits for w.~, w~, w~, w~, and w~ 
were calculated by this "modified" Fieller-procedure. 
I t  was then decided whether or not the true fitnesses 
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Fig. t .  Empi r i ca l  c u m u l a t i v e  f r equency  curves  of wx and  w~ f rom 
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p o p u l a t i o n s  4, 2 l ,  29 ,  49 .  B r o k e n  l i n e s :  E x p e c t e d  l i m i t  n o r m a l  c u r v e s  
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are included. After a run of 1000 experiments  an 
empirical percentage of correct s ta tements  is obtained 
which is compared with the theoretical value of 95 %. 
In  Table 3 the relative frequencies of correct state-  
ments  are shown for the runs of populations no. 4, 
21, 29, 49. 

Another  method for calculating approximate  confi- 
dence limits for w~* and w* was applied at  the same 
time. Est imates  of the variance of w* and w~* are 
obtained in the same way as described above. For 
example 

A A / N  / X  ^ ^ 
~, var . 

( 2 . t 6 )  

All values of w** which now fit the inequali ty 

^* 1.96 W a r  (w~*)< w** ~ ~* + 1.96 W a r  (~**) ~ ) x  - -  

(2 . , t  7 )  

form an approximate  95 %-confidence interval  for wx* 
in an individual experiment.  Again for each run the 

frequency of correct s ta tements  was evaluated. In 
order to distinguish this kind of limit from the Fieller 
confidence limit they  will be denominated as the 
Gauss confidence limits. 

From Table 3 it is seen tha t  tile FielIer limits for 
w~, wy, w, produce a frequency of errors which in most  
cases is higher than  the admit ted  level of 5%. Al- 
though a certain convergence to the admit ted  level is 
observed, which is more pronounced for w x and w, 
than for wy, even with N = 2000 this limit is not 
a t ta ined in all cases. On the contrary,  the error fre- 
quency for w* and w* agrees well with 5%. This is 
true for the Fieller limits as well as for the Gauss 
limits. 

3. Tests of  Signif icance 

Different tests can be constructed for the class of 
null hypotheses H 0: w i = w  i ( i , i = x , y , z ; j  =/=i) 
against the al ternatives Hi:  w i # wi and then be 
comt)ared with respect to their power. @~ is asynl- 

/ x ,  
ptotically normal  for N = N 1-> oo, whereas var  (wi) 
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and  cov (wi, ~vj) -- as ca l cu l a t ed  
accord ing  to  the  rule g iven  
above  - -  converge  s tochas t i ca l l y  
t o w a r d s  v a r  (wD a n d  c o y  (&i, &j) 
respec t ive ly .  There fore  a cr i t i -  
cal  region R for H 0 m a y  be chosen 
wi th  reference to  the  u - t e s t  for 
n o r m a l l y  d i s t r i b u t e d  va r ia tes .  I f  

d ~  x - - y  d 

(2.18) 
is used as the  tes t  s t a t i s t i c ,  then  
the  cr i t ica l  region R consis ts  of 
all  those  pa i rs  wi, wi, for  which  

P rob  {[dl > d,}  = e ,  (2.19) 

where  e is the  a d m i t t e d  e r ror  
of the  f i rs t  k ind  and  6, = 1.96 
for e = .05. I t  is e x p e c t e d  t h a t  
(2.t9) holds  t rue  a p p r o x i m a t e l y  
unde r  H 0 for N and  N 1 be ing  
large.  On the  o the r  hand ,  i t  is 
no t  e x p e c t e d  t h a t  unde r  H 0 the  
t es t  s t a t i s t i c  d has  S t u d e n t ' s  
d i s t r i bu t i on ,  for the  fol lowing 
reasons :  ~ i  and  wi a re  no t  nor-  
ma l ;  t he  express ion  u n d e r  the  
root  in the  d e n o m i n a t o r  is ne i the r  
d i s t r i b u t e d  as a X 2 nor  are  
degrees  of f reedom def ined  for i t  ; 
and  this  express ion  is no t  inde-  
p e n d e n t  of the  n o m i n a t o r .  

I n  o rde r  to  examine  the  pro-  
pe r t i e s  of th is  tes t ,  i t  was asked  
for  each  run  how f r equen t l y  the  
t es t  s t a t i s t i c  ~ falls  in to  R if H o 
is t rue .  In  th i s  w a y  an e s t i m a t e  
of the  t rue  er ror  of t he  f i rs t  k ind  

R. J. Lorenz: Theoret. Appl. Genetic, 
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e* is o b t a i n e d  f rom each run  and  th is  is hoped  to be 
equa l  or ve ry  nea r  to  ~ ( =  .05). 

To do this ,  for a n y  of the  8 combina t i o ns  of p ,  and  t 
t he  equ i l ib r ium popu l a t i on  unde r  the  condi t ion  
w x = wy = w, = I was asce r ta ined .  F o r  each popu-  
l a t ion  N and  N~ (N 1 = N) were g r a d u a t e d  f rom 40C 
to 2000 as before ,  and  for each of the  resu l t ing  com- 
b ina t i ons  of p, ,  t and  N a run  of 1000 s imu la t ions  was 
pe r fo rmed .  F r o m  each run  the  e s t ima te s  ~* were 
d e t e r m i n e d  for  the  th ree  nul l  hypo the se s  w, - -  w2 = 
-= 0, w, - -  wy = 0, w~ - -  w~ = 0 a n d  then  c o m p a r e d  
with .05. The  ag reemen t  was s a t i s f a c t o r y  in all  cases 
excep t  for p ,  = .85, t = .04, N = 400 and  N = 800, 
where  the  la rges t  dev i a t i ons  were o b t a i n e d  (~*=.075 
a n d  .077). 

A f t e r w a r d s  the  f r equency  of d fa l l ing in to  R was 
e v a l u a t e d  in cases where  H o in fac t  is no t  t rue ,  i.e., 
where  wi and w i are  d i f ferent .  This  f r equency  is now 
an e s t ima te  of the  p r o h a b i l i t y  of re jec t ing  Ho, when 
indeed  H 0 is false, such t h a t  D = w ~ - - w  i has a 
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2. Power function graphs for quotient tests "due to Fieller" and 

cer ta in  non-zero  va lue .  T a k i n g  in to  accoun t  a series 
of d i f ferent  va lues  of D, t he  co r respond ing  f requen-  
cies r e sp resen t  po in t s  which  are  nea r  to  the  power  
func t ion  g(D) of t he  t es t  u n d e r  cons idera t ion .  

This  tes t ,  which  is based  on D, shal l  be d e n o t e d  as 
"d i f fe rence  t e s t " .  I t s  power  func t ion  g(D) will be  
r ep re sen t ed  as a func t ion  of D, a l though  the  power  
func t ion  depends  no t  on ly  on D, b u t  also on the  p a r a -  
me te r s  w i and  w i themse lves .  To speak  in geomet r i -  
cal t e rms ,  one has  to  imagine  a power  func t ion  sur -  
face, each po in t  of which  has  t h ree  coo rd ina t e s  wi, 
w i, g, which are non -ne ga t i ve  n u m b e r s :  wi > 0, 
w i > O ,  O < g ~ l .  One of t he  p rope r t i e s  of th is  
surface  is t h a t  g = e* for a l l  wi, w i w i th  wi = w i, i.e. 
g(0) = e*. The  power  func t ions  cons idered  here  ar ise  
f rom in te r sec t ions  of th is  surface  wi th  cy l indr i ca l  
surfaces,  which are  e rec ted  on a curve  in the  wi, 
wi-plane,  s t a r t i n g  a t  a po in t  where  wi = wi. 

A n o t h e r  poss ib i l i t y  to corot)are ~,, (and ~ ,  resp.) 
wi th  • ar ises  f rom conf idence in te rva l s ,  i na smuch  
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to Gauss" for different combinations of Pn, t, and N (= -?ql) 

as a confidence interval may be considered as a test 
of significance. In our case the null hypothesis Ho: 
w i - - w  v = 0  ( i = x , z )  is to be converted into the 
form (w i /wy)  --  t = 0 or H~: w* -- I = 0. H~' will be 
accepted or rejected according to whether or not the 
number t .0 is contained within the confidence limits 
which are determined for w* from the ratio of esti- 
mates ~ ,  ~y, i.e., from ~* ---- ~i/~y. In other words, 
the critical region R* consists of the set of all those 
pairs (wi, wy), for which the confidence interval does 
not contain 1.0. This test will be called a "quo- 
tient test".  The confidence limits may be deter- 
mined either "due to Fieller" or "due to Gauss". 
Both methods were applied in each individual simu- 
lation experiment. 

Whenever w* = I is true, the number t .0 should 
be outside the confidence limits with probability e 
( =  .05). This requirement was proven to be satisfied 
for the 8 equilibrium population with w, = wy---- 
w~ = t, as described above. 

If the quotient test for w* and 
w** is based on Fieller's limits 
with respect to the alternative 
hypotheses in Table l, it is found 
that  the empirical frequencies 
of rejecting H o are exactly the 
same as those of the correspond- 
ing difference tests for w , - -  w~ 
and w , -  w~ respectively in 
almost all runs of simulation. 
Inspection of individual experi- 
ments confirmed that  (wi, wy) 
falls into R, if and only if the 
number t .0 is included in the 
critical region of the quotient 
test "due to Fieller". Only a 
few exceptions to this rule were 
observed when N = 400. I t  
seems, thus, that  both tests are 
asymptotically equivalent. 

To summarize, the following 
tests were performed in each 
experiment and the estimates 
of power determined from each 
run : 

No: w, --  wy = 0 ,  

W ~ - - W y ~ 0 ,  W x - - W z ~ O  ; 

H ~ : w ~ * - - I  = 0 ,  w*= - - 1  = 0  
(due to Fieller) , 

H ~  : w~  - -  t = O , w ~  - -  l = O 

(due to Gauss). 

For illustration the power func- 
tion graphs of the quotient tests 
"due to Fieller" and "due to 
Gauss" are given for all 8 corn- 

binations of p ,  and t ,  and for different sizes of 
N ( =  N1) in Fig. 2. 

As a marker for comparison we may use that  value 
of w* for which the (estimated) probability of an 
error of the second kind is just .05. This means that,  
if the true value w~* in fact deviates from 1.0, then 
the probability of rejecting the null hypothesis is 
�9 95. For N = 2000 these critical values are marked 
by vertical broken lines. I t  is evident that  a test is 
the more powerful, the smaller the deviation from 1.0, 
which it can detect at the same level of error of second 
kind. From the figures it is seen that  both quotient 
tests have more power at Pn ---- .55 than at p ,  = .85, 
and that  within each p,-group the power decreases 
as t decreases. On the other hand the power naturally 
depends on N, especially if N is not large. 

As an example we assume that  the errors of tile 
first and second kind shall each be .05. With N - - - N I =  
---- 2000 a fitness reduction of the  homozygotes can 
be detected with probability .95, if tl~e true fitness 
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Table 

N 

3. Relative frequencies of correct statements with 
approximate 95% confidence intervals 

due to Fieller and Gauss 

w~ wy w~ ~ w~ w~ w~ 

(Fieller) (Fieller) (Gauss) 

PopulagonNo. 4 
400 .896 .863 .888 .950 . 9 4 8  .944 .942 
800 .893 .842 .9t2 . 9 4 7  .956 .931 .941 

t200 .904 .887 .918 .948 .957 .943 .953 
1600 .893 .874 .920 .941 . 9 6 3  .949 .955 
2000 .932 .884 .936 .960 . 9 5 6  .956 .948 

Population ~r0.21 
400 .909 .822 .886 .951 .953 .944 .94i 
8O0 .912 .851 .902 .947  .953 .945 .954 

t200 .900 .851 . 8 9 5  -950  .950 .942 .948 
1600 .896 .857 .908 .947 .962 .946 .956 
2000 .940 .792 .948 .944 . 9 4 0  .952 .940 

Population No. 29 
400 .915 .849 . 8 9 3  .939 .952 . 9 4 7  .937 
800 .946 .874 .907  .949 .959 . 9 6 5  .954 

1200 .952 .871 . 9 0 7  .958 .952 .96t .959 
t600 .956 .871 .941 .955 .95o . 9 5 5  .961 
2000 .952 .876 .912 .948 . 9 4 8  .956 .960 

Population No. 49 
4O0 .937 .849 .850 .950 .967  .952 .943 
800 .946 .873 .860 .937 .969 .971 .950 

1200 .959 .865 . 8 8 7  .946 .950 .968 .953 
~600 .962 .888 .913 .948 .955 .96t .951 
2000 .956 .892 . 9 0 8  .944 .972 .968 .964 

w~ is .73 or less. In  order to make a statement at the 
same level of security if the true fitness w~ is about .8, 
the sample size must be increased tremendeously. 

From the figures it is seen furthermore that  gener- 
ally the quotient test due to Gauss is more powerful 
than the test due to Fieller. Especially for values of 
w~ near to t.0 the power function of the Gauss-test 
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0.6 "---1600 ] ' l / t  

0.2 i 
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0 . f i  = 

0.4 

0 2 , ~  

increases more rapidly, and the 95%-threshold is 
reached for values which are nearer to 1.0 than in case 
of the Fieller-test. This means that  under the same 
experimental conditions it is easier to detect a certain 
fitness difference with the Gauss-test than with 
Fieller's. 

The Case N 1 ~ N.  Under natural  conditions N z 
is generally much smaller than N. As is expected, the 
approximation of the empirical d.f.s of the fitness 
estimates by normal d.f. s is less satisfactory than in 
the case N z = N. We may ask now for the effect 
on tests of significance. In Fig. 3 (lower part) some 
power function graphs are shown for p ,  ----- . 55, t = .  10 
(population 4, Table 1). For comparison the corres- 
ponding graphs under N 1 = N from Fig. 2 are given 
again. As may  be observed, the effect is a considerable 
one. The critical fitness value w,,* which can just be 
detected with probability .95 at N = 2000, Nz = 400, 
is now .68 (.73 with N ---- N 1 = 2000). 

D i s c u s s i o n  

I t  is difficult to draw direct and concrete conclu- 
sions from this body of simulation data about the prac- 
tice of field experiments. Natural populations in general 
are not in equilibrium, as was assumed here. But this 
argument has no relevancy to the stochastic properties 
of fitness estimators. Of practical interest is mainly 
the detection of true deviations of w~ and w~ from t .0, 
if they exist. At the same time one must avoid the 
assertion that  such deviates exist when they do not. 

Among the procedures described above the most 
simple one denoted as "quotient  test due to Gauss" 
turned out also to be the best one with respect to this 
purpose. Within the range of population parameters 
(p,, t , f~ *)) which was under consideration here, the 
power of this test depends more on the sample size 
than on the parameters. However, in order to keep 
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Fig. 3. Power function graphs ot quotient tests "due to Pieller" and "due to Gauss" for p .  = .55, * = .to. 
N 1 = 400, upper part:  N 1 = N for comparison (from Fig. 2) 

Lower part:  
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the nominal probabilities of an error of first kind, 
p~ as well asf~/') (and f ~ t )  should not have extremely 
large or small values. Furthermore, t should not be 
too small if usual sample sizes are employed. 

Because of the relatively small sample size which 
is available for estimating the outcrossing rate t, the 
only variables which are quite at the experimenter's 
disposal are the sizes of genotype samples in gener- 
ations n and n + 1. Those amounts of the sizes 
which are necessary in order to guarantee a certain 
probability of errors of the second kind may be 
evaluated by means of simulation experiments. In a 
step-by-step procedure from provisional estimates 
and confidence intervals for w~ and w~, the power of 
the test can be evaluated for a set of compatible 
hypotheses about w~ and w~. Then it must be decid- 
ed if more individuals are to be included in the sample. 

The program for the estimation of the power, which 
is written in Fortran IV, may be obtained from the 
author. 

Zusammenfassung 
Im ersten Teil dieser Arbeit* wurde eine alge- 

braische Darstellung yon Reproduktions- und Selek- 

* Vol. 40 (1970), No. l, S. l I -- t 7, dieser Zeitschrift. 

tionsvorg~ingen in Populationen diploider Organis- 
men gegeben. Im zweiten Teil werden die statisti- 
schen Eigenschaften einer speziellen, yon Hayman 
stammenden Schigtzfunktion fiir die Fitness betrach- 
tet. Es werden verschiedene M6glichkeiten zur Be- 
rechnung von Konfidenzintervallen und znr Durch- 
fiihrung yon Signifikanztesten angegeben und mit 
Hilfe von Simulationsstudien gepriift. 
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